论文标题

注意SWIN U-NET:皮肤病变细分的跨膜片关注机制

Attention Swin U-Net: Cross-Contextual Attention Mechanism for Skin Lesion Segmentation

论文作者

Aghdam, Ehsan Khodapanah, Azad, Reza, Zarvani, Maral, Merhof, Dorit

论文摘要

黑色素瘤是由人皮肤中黑色素细胞异常生长引起的。像其他癌症一样,这种威胁生命的皮肤癌可以通过早期诊断来治疗。为了通过自动皮肤病变细分进行诊断,已经提出了几种完全卷积网络(FCN)方法,特别是U-NET结构。具有对称体系结构的U-NET模型在分割任务中表现出卓越的性能。但是,在U-NET体系结构中纳入的卷积操作的局部性限制限制了其在捕获长期依赖性方面的性能,这对于医疗图像中的分割任务至关重要。为了解决这一限制,最近提出了一种基于变压器的U-NET体系结构,该体系结构已提议用Swin Transformer模块替换CNN块来捕获本地和全局表示。在本文中,我们提出了一种基于注意力的SWIN U-NET扩展,用于医疗图像分割。在我们的设计中,我们试图通过仔细设计跳过连接路径来增强网络的功能可重复使用。我们认为,通过合并注意力机制可以进一步改善在跳过连接路径中使用的经典串联操作。通过对几个皮肤病变分割数据集进行全面的消融研究,我们证明了我们提出的注意机制的有效性。

Melanoma is caused by the abnormal growth of melanocytes in human skin. Like other cancers, this life-threatening skin cancer can be treated with early diagnosis. To support a diagnosis by automatic skin lesion segmentation, several Fully Convolutional Network (FCN) approaches, specifically the U-Net architecture, have been proposed. The U-Net model with a symmetrical architecture has exhibited superior performance in the segmentation task. However, the locality restriction of the convolutional operation incorporated in the U-Net architecture limits its performance in capturing long-range dependency, which is crucial for the segmentation task in medical images. To address this limitation, recently a Transformer based U-Net architecture that replaces the CNN blocks with the Swin Transformer module has been proposed to capture both local and global representation. In this paper, we propose Att-SwinU-Net, an attention-based Swin U-Net extension, for medical image segmentation. In our design, we seek to enhance the feature re-usability of the network by carefully designing the skip connection path. We argue that the classical concatenation operation utilized in the skip connection path can be further improved by incorporating an attention mechanism. By performing a comprehensive ablation study on several skin lesion segmentation datasets, we demonstrate the effectiveness of our proposed attention mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源