论文标题
有限公制树图和叶片剥离法上狄拉克系统的反向动态问题
Inverse Dynamic Problem for the Dirac System on Finite Metric Tree Graphs and the Leaf Peeling Method
论文作者
论文摘要
在本文中,我们考虑了有限公制树图上狄拉克系统的反向动态问题。我们的主要目标是恢复树的拓扑(连接),边缘长度以及每个边缘上的矩阵电位函数。我们将动态响应算子用作我们的逆数据,并应用叶片剥离方法。此外,我们提出了一种新的动态算法,以解决一般有限度量图上狄拉克系统的正向问题。
In this paper, we consider the inverse dynamic problem for the Dirac system on finite metric tree graphs. Our main goal is to recover the topology (connectivity) of a tree, lengths of edges, and a matrix potential function on each edge. We use the dynamic response operator as our inverse data and apply the Leaf peeling method. In addition, we present a new dynamic algorithm to solve the forward problem for the Dirac system on general finite metric graphs.