论文标题
关于在二维无限长通道中的稳定流量的LERAY问题上
On the Leray problem for steady flows in two-dimensional infinitely long channels with slip boundary conditions
论文作者
论文摘要
在本文中,我们研究了在带直插座的二维通道中,在全滑边界条件下,稳定的Navier-Stokes系统的Leray问题。建立了在具有滑动边界条件的一般通道中任意通量的溶液的存在,这趋向于远场的剪切流。此外,如果通量合适,则证明解决方案是独一无二的。至关重要的成分之一是构造适当的通量载体,并显示出具有全滑边界条件的流量的强壮类型不等式。
In this paper, we investigate the Leray problem for steady Navier-Stokes system under full slip boundary conditions in a two dimensional channel with straight outlets. The existence of solutions with arbitrary flux in a general channel with slip boundary conditions is established, which tend to the shear flows at far fields. Furthermore, if the flux is suitably small, the solutions are proved to be unique. One of the crucial ingredients is to construct an appropriate flux carrier and to show a Hardy type inequality for flows with full slip boundary conditions.