论文标题

从谐波代数的角度来看,多个$ l $ - 价值的生根树

Rooted tree maps for multiple $L$-values from a perspective of harmonic algebras

论文作者

Murahara, Hideki, Tanaka, Tatsushi, Wakabayashi, Noriko

论文摘要

在本文中,我们显示了生根树地图本身的图像,形成了多个$ L $值评估图的内核的子空间。为了证明其证明,我们将钻石产品定义为修改的谐波产品,并找到其特性。我们还表明,$τ$ - 偶联的生树地图是它们的对立面。

In this paper, we show the image of rooted tree maps themselves forms a subspace of the kernel of the evaluation map of multiple $L$-values. For its proof, we define the diamond product as a modified harmonic product and find its properties. We also show that $τ$-conjugate rooted tree maps are their antipodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源