论文标题
从谐波代数的角度来看,多个$ l $ - 价值的生根树
Rooted tree maps for multiple $L$-values from a perspective of harmonic algebras
论文作者
论文摘要
在本文中,我们显示了生根树地图本身的图像,形成了多个$ L $值评估图的内核的子空间。为了证明其证明,我们将钻石产品定义为修改的谐波产品,并找到其特性。我们还表明,$τ$ - 偶联的生树地图是它们的对立面。
In this paper, we show the image of rooted tree maps themselves forms a subspace of the kernel of the evaluation map of multiple $L$-values. For its proof, we define the diamond product as a modified harmonic product and find its properties. We also show that $τ$-conjugate rooted tree maps are their antipodes.