论文标题

探索生成化学中量子生成对抗网络的优势

Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry

论文作者

Kao, Po-Yu, Yang, Ya-Chu, Chiang, Wei-Yin, Hsiao, Jen-Yueh, Cao, Yudong, Aliper, Alex, Ren, Feng, Aspuru-Guzik, Alan, Zhavoronkov, Alex, Hsieh, Min-Hsiu, Lin, Yen-Chu

论文摘要

具有所需生物活性的从头制药设计对于为患者开发新的治疗疗法至关重要。药物开发过程是时间和资源消费,成功的可能性很低。机器学习和深度学习技术的最新进展减少了发现过程的时间和成本,因此改善了药物研究和开发。在本文中,我们探讨了在药物开发过程中两个快速发展的领域与铅候选人发现的结合。首先,已经证明人工智能成功加速了传统的药物设计方法。其次,量子计算在不同的应用中表现出了有希望的潜力,例如量子化学,组合优化和机器学习。该手稿探索了用于小分子发现的混合量子量子生成对抗网(GAN)。我们用变异量子电路(VQC)代替了gan的每个元素,并证明了小药物发现中的量子优势。在GAN的噪声发生器中利用VQC生成小分子,比经典的基准相比,在目标定向的基准中,具有更好的物理化学特性和性能。此外,我们证明了GAN发生器中仅具有数十个可学习参数的VQC的潜力,以生成小分子。我们还证明了VQC在GAN的歧视器中的量子优势。在此混合模型中,可学习参数的数量明显少于经典的参数,并且仍然可以生成有效的分子。量子鉴别器中仅具有数十个训练参数的混合模型在产生的分子特性和达到的KL差异方面都优于基于MLP的杂种模型。

De novo drug design with desired biological activities is crucial for developing novel therapeutics for patients. The drug development process is time and resource-consuming, and it has a low probability of success. Recent advances in machine learning and deep learning technology have reduced the time and cost of the discovery process and therefore, improved pharmaceutical research and development. In this paper, we explore the combination of two rapidly-developing fields with lead candidate discovery in the drug development process. First, Artificial intelligence has already been demonstrated to successfully accelerate conventional drug design approaches. Second, quantum computing has demonstrated promising potential in different applications, such as quantum chemistry, combinatorial optimizations, and machine learning. This manuscript explores hybrid quantum-classical generative adversarial networks (GAN) for small molecule discovery. We substituted each element of GAN with a variational quantum circuit (VQC) and demonstrated the quantum advantages in the small drug discovery. Utilizing a VQC in the noise generator of a GAN to generate small molecules achieves better physicochemical properties and performance in the goal-directed benchmark than the classical counterpart. Moreover, we demonstrate the potential of a VQC with only tens of learnable parameters in the generator of GAN to generate small molecules. We also demonstrate the quantum advantage of a VQC in the discriminator of GAN. In this hybrid model, the number of learnable parameters is significantly less than the classical ones, and it can still generate valid molecules. The hybrid model with only tens of training parameters in the quantum discriminator outperforms the MLP-based one in terms of both generated molecule properties and the achieved KL divergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源