论文标题

$ n_f = 8 $基本口味

Gradient flow step-scaling function for SU(3) with $N_f=8$ fundamental flavors

论文作者

Hasenfratz, Anna, Rebbi, Claudio, Witzel, Oliver

论文摘要

SU(3)仪表系统提出了逐步缩放函数,即重新归一化组$β$函数的晶格类似物,其基本表示中具有八种口味。我们的调查基于使用坚固的Möbius域壁费和Symanzik仪表作用生成动力学八个风味量表场的配置。在这些量规场配置上,我们使用Zeuthen,Wilson或Symanzik内核执行梯度流量测量值,并考虑Symanzik,Wilson Plaquette或Cllover Operators确定尺度更改的阶级缩放函数$ S = 2 $,包括大型,最高$ 48^4 $,数量。考虑到不同的流量和操作员以及对树级改进的可选使用,使我们能够检查可能的系统效果。我们的结果涵盖了重新归一化的耦合范围,最高为$ g_c^2 \ Lessim 10 $。在$ n_f = 8 $的情况下,我们观察到,$ g_c^2 $中的覆盖范围受到限制,这是由于非物理的一阶批量散装相变,这是由大型超紫色波动引起的。 我们将我们的发现与$ n_f = 4 $,6、10或12个口味结果进行比较,这些结果是使用相同的晶格动作和分析获得的。此外,我们使用臭名昭著的Möbius域壁费和Symanzik量规操作研究了不同数量口味的模拟的相结构,以阐明$ G_C^2 $中的有限覆盖范围。

The step-scaling function, the lattice analog of the renormalization group $β$ function, is presented for the SU(3) gauge system with eight flavors in the fundamental representation. Our investigation is based on generating dynamical eight flavor gauge field configurations using stout-smeared Möbius domain wall fermions and Symanzik gauge action. On these gauge field configurations we perform gradient flow measurements using the Zeuthen, Wilson, or Symanzik kernel and consider the Symanzik, Wilson plaquette, or clover operators to determine step-scaling functions for a scale change $s=2$ including large, up to $48^4$, volumes. Considering different flows and operators as well as the optional use of tree-level improvement allows us to check for possible systematic effects. Our result covers the range of renormalized coupling up to $g_c^2 \lesssim 10$. In the case of $N_f=8$ we observe that the reach in $g_c^2$ is limited due to an unphysical first order bulk phase transition caused by large ultra-violet fluctuations. We compare our findings to $N_f=4$, 6, 10 or 12 flavors results that are obtained using the same lattice action and analysis. In addition we investigate the phase structure for simulations with different number of flavors using stout-smeared Möbius domain wall fermions and Symanzik gauge actions to shed some light on the limited reach in $g_c^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源