论文标题
序列熵元素和平均敏感元素
Sequence entropy tuples and mean sensitive tuples
论文作者
论文摘要
使用局部熵理论的概念,我们通过拓扑和测量理论感官的敏感元组的平均形式表征了序列熵元组。对于量度理论意义,我们表明,对于千古量的固定系统,$ $ $ $序列的熵元组,$ $ $ $ - 英镑的敏感元素和$ $ $ $ $ $敏感的平均元组,并提供一个示例,以表明这种细胞状态是必需的。对于拓扑意义,我们表明,对于某些最小的系统,平均敏感元组是序列熵元组。
Using the idea of local entropy theory, we characterize the sequence entropy tuple via mean forms of the sensitive tuple in both topological and measure-theoretical senses. For the measure-theoretical sense, we show that for an ergodic measure-preserving system, the $μ$-sequence entropy tuple, the $μ$-mean sensitive tuple and the $μ$-sensitive in the mean tuple coincide, and give an example to show that the ergodicity condition is necessary. For the topological sense, we show that for a certain class of minimal systems, the mean sensitive tuple is the sequence entropy tuple.