论文标题

ISG:我可以看到你的基因表达

ISG: I can See Your Gene Expression

论文作者

Yang, Yan, Pan, LiYuan, Liu, Liu, Stone, Eric A

论文摘要

本文旨在准确地预测组织学滑动图像的基因表达。这样的幻灯片图像具有较大的分辨率和稀疏分布的纹理。这些阻碍提取和解释从幻灯片图像中的歧视特征,以预测各种基因类型。现有的基因表达方法主要使用一般组件来过滤无纹理区域,提取特征和整个区域均匀的骨料特征。但是,它们忽略了不同图像区域之间的差距和相互作用,因此在基因表达任务中较低。取而代之的是,我们提出了ISG框架,该框架通过三个新模块来利用纹理丰富区域的判别特征之间的相互作用:1)基于香农信息内容和所罗门诺夫的理论的香农选择模块,以滤除无纹理图像区域; 2)一个特征提取网络,用于提取高分辨率图像之间有效区域相互作用的表达性低维特征表示; 3)双重注意网络参与具有所需基因表达特征的区域,并将其汇总为预测任务。标准基准数据集的广泛实验表明,所提出的ISG框架的表现明显优于最先进的方法。

This paper aims to predict gene expression from a histology slide image precisely. Such a slide image has a large resolution and sparsely distributed textures. These obstruct extracting and interpreting discriminative features from the slide image for diverse gene types prediction. Existing gene expression methods mainly use general components to filter textureless regions, extract features, and aggregate features uniformly across regions. However, they ignore gaps and interactions between different image regions and are therefore inferior in the gene expression task. Instead, we present ISG framework that harnesses interactions among discriminative features from texture-abundant regions by three new modules: 1) a Shannon Selection module, based on the Shannon information content and Solomonoff's theory, to filter out textureless image regions; 2) a Feature Extraction network to extract expressive low-dimensional feature representations for efficient region interactions among a high-resolution image; 3) a Dual Attention network attends to regions with desired gene expression features and aggregates them for the prediction task. Extensive experiments on standard benchmark datasets show that the proposed ISG framework outperforms state-of-the-art methods significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源