论文标题

根据有限组的平均顺序

On the average order of a finite group

论文作者

Lazorec, Mihai-Silviu, Tărnăuceanu, Marius

论文摘要

令$ o(g)$为有限的$ g $的平均订单。我们表明,如果$ o(g)<c $,其中$ c \ in \ lbrace \ frac {13} {6} {6},\ frac {11} {4} {4} \ rbrace $,则$ g $分别是基本的Abelian 2组或一个可求解的组。另外,我们证明包含所有有限组的平均订单的集合在$ [a,\ infty)$中均不密度,对于[0,\ frac {13} {6}] $,所有$ a \ in $ [a,\ infty)$。我们还概述了与平均顺序的整数值有关的一些结果。由于小组元素订单是一个受欢迎的研究主题,因此我们对整个论文中有限组的平均顺序提出了一些开放问题。

Let $o(G)$ be the average order of a finite group $G$. We show that if $o(G)<c$, where $c\in \lbrace \frac{13}{6}, \frac{11}{4}\rbrace$, then $G$ is an elementary abelian 2-group or a solvable group, respectively. Also, we prove that the set containing the average orders of all finite groups is not dense in $[a, \infty)$, for all $a\in [0, \frac{13}{6}]$. We also outline some results related to the integer values of the average order. Since group element orders is a popular research topic, we pose some open problems concerning the average order of a finite group throughout the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源