论文标题

tformer:用几何引导变压器进行网状扫描中的3D牙齿分割

TFormer: 3D Tooth Segmentation in Mesh Scans with Geometry Guided Transformer

论文作者

Xiong, Huimin, Li, Kunle, Tan, Kaiyuan, Feng, Yang, Zhou, Joey Tianyi, Hao, Jin, Liu, Zuozhu

论文摘要

光学内部扫描仪(iOS)广泛用于数字牙科,提供了牙冠和金吉瓦的3维(3D)和高分辨率几何信息。准确的3D牙齿分割旨在精确描绘iOS中的牙齿和牙龈实例,在各种牙科应用中起着至关重要的作用。但是,先前方法的分割性能在复杂的牙齿或牙齿牙齿边界中易用,并且通常在各种患者中表现出不令人满意的结果,但是临床上的适用性未通过大型数据集验证。在本文中,我们提出了一种基于3D变压器体系结构的新方法,该方法通过大规模和高分辨率3D iOS数据集进行了评估。我们的方法称为tformer,在不同牙齿之间捕获了局部和全球依赖性,以通过不同的解剖结构和混乱的边界区分各种类型的牙齿。此外,我们设计了基于新点曲率的几何引导损失,以利用边界几何特征,这有助于完善边界预测以更准确和平滑的分割。我们进一步采用了多任务学习方案,其中引入了额外的牙齿分割头以提高性能。广泛的实验结果在一个大规模数据集中,据我们所知,最大的iOS数据集是16,000个iOS,这表明我们的tformer可以超过现有的最新基线,并具有很大的利润,并在经过临床适用性测试验证的现实世界中实用程序。

Optical Intra-oral Scanners (IOS) are widely used in digital dentistry, providing 3-Dimensional (3D) and high-resolution geometrical information of dental crowns and the gingiva. Accurate 3D tooth segmentation, which aims to precisely delineate the tooth and gingiva instances in IOS, plays a critical role in a variety of dental applications. However, segmentation performance of previous methods are error-prone in complicated tooth-tooth or tooth-gingiva boundaries, and usually exhibit unsatisfactory results across various patients, yet the clinically applicability is not verified with large-scale dataset. In this paper, we propose a novel method based on 3D transformer architectures that is evaluated with large-scale and high-resolution 3D IOS datasets. Our method, termed TFormer, captures both local and global dependencies among different teeth to distinguish various types of teeth with divergent anatomical structures and confusing boundaries. Moreover, we design a geometry guided loss based on a novel point curvature to exploit boundary geometric features, which helps refine the boundary predictions for more accurate and smooth segmentation. We further employ a multi-task learning scheme, where an additional teeth-gingiva segmentation head is introduced to improve the performance. Extensive experimental results in a large-scale dataset with 16,000 IOS, the largest IOS dataset to our best knowledge, demonstrate that our TFormer can surpass existing state-of-the-art baselines with a large margin, with its utility in real-world scenarios verified by a clinical applicability test.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源