论文标题
因果发现动态模型,以预测人类的空间相互作用
Causal Discovery of Dynamic Models for Predicting Human Spatial Interactions
论文作者
论文摘要
无论仓库,购物中心还是医院,都要利用机器人进行人类共享环境中的活动,呼吁此类机器人了解附近的代理商与物体之间的基本身体互动。特别是,对后者之间的因果关系建模可以帮助预测未观察到的人类行为并预测特定机器人干预的结果。在本文中,我们提出了因果发现方法的应用,以模拟人类机器人的空间相互作用,试图在两种可能的情况下从现实世界传感器数据中理解人类行为:与环境相互作用的人类和人类与障碍相互作用。讨论了新的方法和实际解决方案,以首次利用在某些充满挑战的人类环境中的最先进的因果发现算法,并在许多服务机器人方案中使用了潜在的应用。为了证明从现实世界数据集获得的因果模型的实用性,我们提出了因果关系和非因果预测方法之间的比较。我们的结果表明,因果模型正确地捕获了所考虑的方案的基本相互作用,并提高了其预测准确性。
Exploiting robots for activities in human-shared environments, whether warehouses, shopping centres or hospitals, calls for such robots to understand the underlying physical interactions between nearby agents and objects. In particular, modelling cause-and-effect relations between the latter can help to predict unobserved human behaviours and anticipate the outcome of specific robot interventions. In this paper, we propose an application of causal discovery methods to model human-robot spatial interactions, trying to understand human behaviours from real-world sensor data in two possible scenarios: humans interacting with the environment, and humans interacting with obstacles. New methods and practical solutions are discussed to exploit, for the first time, a state-of-the-art causal discovery algorithm in some challenging human environments, with potential application in many service robotics scenarios. To demonstrate the utility of the causal models obtained from real-world datasets, we present a comparison between causal and non-causal prediction approaches. Our results show that the causal model correctly captures the underlying interactions of the considered scenarios and improves its prediction accuracy.