论文标题

使用牙科CBCT数据,种植体:基于视觉变压器的植入物位置回归

ImplantFormer: Vision Transformer based Implant Position Regression Using Dental CBCT Data

论文作者

Yang, Xinquan, Li, Xuguang, Li, Xuechen, Wu, Peixi, Shen, Linlin, Deng, Yongqiang

论文摘要

植入物假体是牙列缺陷或牙列损失的最合适的治疗方法,通常涉及手术指南设计过程以确定植入物位置。但是,这种设计在很大程度上依赖于牙医的主观体验。在本文中,提出了一个基于变压器的植入物回归网络,即植入式网络,以根据口头CBCT数据自动预测植入物位置。我们创造性地建议使用牙冠区域的2D轴向视图预测植入物位置,并安装植入物的中心线,以获得牙齿根部的实际植入物位置。卷积茎和解码器的设计旨在在贴片嵌入操作之前粗糙地提取图像特征,并分别集成多级特征图以进行稳健预测。由于涉及远程关系和本地功能,我们的方法可以更好地表示全球信息,并实现更好的位置性能。通过五倍的交叉验证,在牙科植入物数据集上进行了广泛的实验表明,所提出的植入物比现有方法实现了卓越的性能。

Implant prosthesis is the most appropriate treatment for dentition defect or dentition loss, which usually involves a surgical guide design process to decide the implant position. However, such design heavily relies on the subjective experiences of dentists. In this paper, a transformer-based Implant Position Regression Network, ImplantFormer, is proposed to automatically predict the implant position based on the oral CBCT data. We creatively propose to predict the implant position using the 2D axial view of the tooth crown area and fit a centerline of the implant to obtain the actual implant position at the tooth root. Convolutional stem and decoder are designed to coarsely extract image features before the operation of patch embedding and integrate multi-level feature maps for robust prediction, respectively. As both long-range relationship and local features are involved, our approach can better represent global information and achieves better location performance. Extensive experiments on a dental implant dataset through five-fold cross-validation demonstrated that the proposed ImplantFormer achieves superior performance than existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源