论文标题
几乎ricci-flat 5-manifolds的kummer型结构
Kummer-type constructions of almost Ricci-flat 5-manifolds
论文作者
论文摘要
如果$$ \ inf_g || \ textrm {ric} _g || _ \ iftty \ cdot \ cdot \ cdot \ cdtrm {diam} _g(m)^2 = 0 $$张量和直径分别为$ g $和$ g $在$ m $上的所有Riemannian指标上运行。通过使用Kummer型方法,我们构建了一个平滑的封闭封闭的几乎Ricci-flat非平局5个manifold $ m $,该$ M $简单地连接。它的最小体积消失了,即它与截面曲率有界的崩溃。
A smooth closed manifold $M$ is called almost Ricci-flat if $$\inf_g||\textrm{Ric}_g||_\infty\cdot \textrm{diam}_g(M)^2=0$$ where $\textrm{Ric}_g$ and $\textrm{diam}_g$ denote the Ricci tensor and the diameter of $g$ respectively and $g$ runs over all Riemannian metrics on $M$. By using Kummer-type method we construct a smooth closed almost Ricci-flat nonspin 5-manifold $M$ which is simply connected. It's minimal volume vanishes, namely it collapses with sectional curvature bounded.