论文标题
Cr Yamabe常数和不相等的Cr结构
CR Yamabe constant and inequivalent CR structures
论文作者
论文摘要
Cr Yamabe常数是紧凑的强pseudoconvex cr歧管的不变,并且在CR几何形状中起着重要作用。我们显示了Yamabe常数的一些积分公式。我们还构建了具有不同cr yamabe常数的强质量共子CR结构的无限二维家族和一个紧凑的简单连接的歧管,允许两个强烈的pseudoconvex cr结构具有不同的Cr Yamabe常数迹象。
The CR Yamabe constant is an invariant of a compact strongly pseudoconvex CR manifold and plays an important role in CR geometry. We show some integral formulae of the CR Yamabe constant. We also construct an infinite-dimensional family of strongly pseudoconvex CR structures with varying CR Yamabe constants and a compact simply-connected manifold admitting two strongly pseudoconvex CR structures with different signs of the CR Yamabe constant.