论文标题

Gowfed - 一种新型联邦网络入侵检测系统

GowFed -- A novel Federated Network Intrusion Detection System

论文作者

Belenguer, Aitor, Pascual, Jose A., Navaridas, Javier

论文摘要

网络入侵检测系统正在演变为智能系统,这些系统在搜索环境中搜索异常时执行数据分析。确实,深度学习技术的发展为建立更复杂和有效的威胁检测模型铺平了道路。但是,在大多数边缘或物联网设备中,培训这些模型在计算上可能是不可行的。当前的方法取决于强大的集中式服务器,这些服务器接收来自所有各方的数据 - 违反了基本的隐私限制,并且由于巨大的沟通开销而导致的响应时间和运营成本实质上。为了减轻这些问题,联邦学习成为一种有前途的方法,在这种方法中,不同的代理人会协作培训共享模型,而无需将培训数据暴露于他人或需要进行计算密集的集中基础架构。这项工作提出了Gowfed,这是一种新型的网络威胁检测系统,结合了Gower差异矩阵和联合平均的使用。基于最先进的知识开发了Gowfed的不同方法:(1)香草版本; (2)具有注意机制的仪器。此外,使用Tensorflow联合框架提供的面向仿真工具对每个变体进行了测试。同样,在一组设计的实验/场景中,进行了联合系统的集中式类似开发,以探索它们在可伸缩性和性能方面的差异。总体而言,Gowfed打算成为联合学习和Gower差异矩阵综合使用的第一个垫脚石,以检测工业级网络中的网络威胁。

Network intrusion detection systems are evolving into intelligent systems that perform data analysis while searching for anomalies in their environment. Indeed, the development of deep learning techniques paved the way to build more complex and effective threat detection models. However, training those models may be computationally infeasible in most Edge or IoT devices. Current approaches rely on powerful centralized servers that receive data from all their parties - violating basic privacy constraints and substantially affecting response times and operational costs due to the huge communication overheads. To mitigate these issues, Federated Learning emerged as a promising approach, where different agents collaboratively train a shared model, without exposing training data to others or requiring a compute-intensive centralized infrastructure. This work presents GowFed, a novel network threat detection system that combines the usage of Gower Dissimilarity matrices and Federated averaging. Different approaches of GowFed have been developed based on state-of the-art knowledge: (1) a vanilla version; and (2) a version instrumented with an attention mechanism. Furthermore, each variant has been tested using simulation oriented tools provided by TensorFlow Federated framework. In the same way, a centralized analogous development of the Federated systems is carried out to explore their differences in terms of scalability and performance - across a set of designed experiments/scenarios. Overall, GowFed intends to be the first stepping stone towards the combined usage of Federated Learning and Gower Dissimilarity matrices to detect network threats in industrial-level networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源