论文标题
不确定性驱动粗粒性自由能模型的主动学习
Uncertainty Driven Active Learning of Coarse Grained Free Energy Models
论文作者
论文摘要
粗网技术在加速具有较大长度和时间尺度的系统的分子模拟中起着至关重要的作用。理论上扎根的自下而上模型由于其热力学的一致性与基础全原子模型而具有吸引力。在这个方向上,机器学习方法具有符合复杂多体数据的巨大希望。但是,培训模型可能需要收集大量昂贵的数据。此外,量化训练有素的模型精度是具有挑战性的,尤其是在训练数据可能稀疏的非平凡自由能配置的情况下。我们展示了通往粗粒粒状自由能表面的不确定性感知模型的路径。具体而言,我们表明,有原则的贝叶斯模型不确定性可以通过现有的活跃学习框架进行有效的数据收集,并打开模型在不同化学系统上自适应传递的可能性。不确定性也表征了模型的自由能预测的准确性,即使仅对力进行训练。这项工作有助于为有效的自主培训铺平道路,以了解可靠和不确定性的多体机器学会的粗粒模型。
Coarse graining techniques play an essential role in accelerating molecular simulations of systems with large length and time scales. Theoretically grounded bottom-up models are appealing due to their thermodynamic consistency with the underlying all-atom models. In this direction, machine learning approaches hold great promise to fitting complex many-body data. However, training models may require collection of large amounts of expensive data. Moreover, quantifying trained model accuracy is challenging, especially in cases of non-trivial free energy configurations, where training data may be sparse. We demonstrate a path towards uncertainty-aware models of coarse grained free energy surfaces. Specifically, we show that principled Bayesian model uncertainty allows for efficient data collection through an on-the-fly active learning framework and open the possibility of adaptive transfer of models across different chemical systems. Uncertainties also characterize models' accuracy of free energy predictions, even when training is performed only on forces. This work helps pave the way towards efficient autonomous training of reliable and uncertainty aware many-body machine learned coarse grain models.