论文标题

对称性受保护的拓扑阶段在反应下

Symmetry protected topological phases under decoherence

论文作者

Lee, Jong Yeon, You, Yi-Zhuang, Xu, Cenke

论文摘要

我们研究由具有潜在非平凡拓扑特征的密度矩阵描述的合奏。特别是,我们研究了一类对称性保护的拓扑(SPT)阶段,这些阶段在各种类型的逆向上都可以将纯SPT状态驱动到混合状态。我们证明该系统仍然可以保留SPT基态的非平凡拓扑信息,即使是在腐蚀下也是如此。在“双倍的希尔伯特空间”中,我们为对称性受保护的拓扑合奏(SPT集合)提供了一个一般定义,而我们研究的主要数量是在双倍的希尔伯特空间中的各种类型的(边界)异常。我们表明,以前提出的奇怪相关因子的概念可以推广为在混合态密度矩阵中捕获这些异常。使用稳定器汉密尔顿人和现场理论评估的精确计算,我们证明,在脱碳下,SPT状态的非平地特征可以持续存在于两种类型的奇怪相关器中:I型I和类型II。我们表明,非平凡的I型奇怪的相关器对应于可以有效识别和利用的SPT信息的存在,例如为准备长期纠缠状态准备的目的。非平凡的II型奇怪的相关器编码了脱副的混合状态密度矩阵的完整拓扑响应,即有关脱碳之前SPT状态的信息。因此,我们的工作提供了一个统一的框架,可以从信息理论观点理解磨碎的SPT阶段。

We study ensembles described by density matrices with potentially nontrivial topological features. In particular, we study a class of symmetry protected topological (SPT) phases under various types of decoherence, which can drive a pure SPT state into a mixed state. We demonstrate that the system can still retain the nontrivial topological information from the SPT ground state even under decoherence. In the "doubled Hilbert space", we provide a general definition for symmetry protected topological ensemble (SPT ensemble), and the main quantity that we investigate is various types of (boundary) anomalies in the doubled Hilbert space. We show that the notion of the strange correlator, previously proposed to as a diagnosis for the SPT ground states, can be generalized to capture these anomalies in mixed-state density matrices. Using both exact calculations of the stabilizer Hamiltonians and field theory evaluations, we demonstrate that under decoherence the nontrivial features of the SPT state can persist in the two types of strange correlators: type-I and type-II. We show that the nontrivial type-I strange correlator corresponds to the presence of the SPT information that can be efficiently identified and utilized from experiments, such as for the purpose of preparing for long-range entangled states. The nontrivial type-II strange correlator encodes the full topological response of the decohered mixed state density matrix, i.e., the information about the presence of the SPT state before decoherence. Therefore, our work provides a unified framework to understand decohered SPT phases from the information-theoretic viewpoint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源