论文标题

阁楼:通过滤波器培训查找彩票

LOFT: Finding Lottery Tickets through Filter-wise Training

论文作者

Wang, Qihan, Dun, Chen, Liao, Fangshuo, Jermaine, Chris, Kyrillidis, Anastasios

论文摘要

关于彩票票证假设(LTH)的最新工作表明,大型神经网络中存在``\ textit {Winning Tickets}'。这些门票代表了完整模型的``稀疏''版本,可以独立培训,以达到相对于完整模型的可比精度。但是,找到获胜的门票需要至少一个时代的大型模型,这可能是一项繁重的任务,尤其是当原始的神经网络变大时,这可能是一项大型模型。 在本文中,我们探讨了如何有效地确定此类获奖门票的出现,并使用此观察结果来设计有效的训练算法。为了清楚说明,我们的重点是卷积神经网络(CNN)。为了识别良好的过滤器,我们提出了一个新颖的滤波器距离度量标准,以良好的代表模型收敛。正如我们的理论所指出的那样,我们的滤波器分析与神经网络学习动态的最新发现一致。通过这些观察,我们通过过滤器培训}算法呈现\ emph {彩票票,称为\ textsc {loft}。 \ textsc {left}是一种模型平行的预算算法,通过过滤器来分配卷积层以在分布式设置中独立训练它们,从而减少了预训练期间的内存和通信成本。实验表明,\ textsc {loft} $ i)$保留并找到了好的彩票,而$ ii)$它可以实现非平凡的计算和沟通储蓄,并且比其他预审计方法保持了可比性甚至更好的准确性。

Recent work on the Lottery Ticket Hypothesis (LTH) shows that there exist ``\textit{winning tickets}'' in large neural networks. These tickets represent ``sparse'' versions of the full model that can be trained independently to achieve comparable accuracy with respect to the full model. However, finding the winning tickets requires one to \emph{pretrain} the large model for at least a number of epochs, which can be a burdensome task, especially when the original neural network gets larger. In this paper, we explore how one can efficiently identify the emergence of such winning tickets, and use this observation to design efficient pretraining algorithms. For clarity of exposition, our focus is on convolutional neural networks (CNNs). To identify good filters, we propose a novel filter distance metric that well-represents the model convergence. As our theory dictates, our filter analysis behaves consistently with recent findings of neural network learning dynamics. Motivated by these observations, we present the \emph{LOttery ticket through Filter-wise Training} algorithm, dubbed as \textsc{LoFT}. \textsc{LoFT} is a model-parallel pretraining algorithm that partitions convolutional layers by filters to train them independently in a distributed setting, resulting in reduced memory and communication costs during pretraining. Experiments show that \textsc{LoFT} $i)$ preserves and finds good lottery tickets, while $ii)$ it achieves non-trivial computation and communication savings, and maintains comparable or even better accuracy than other pretraining methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源