论文标题
公制崩溃下的标量曲率
Scalar curvature under the collapse of metric
论文作者
论文摘要
我们证明了一个公式,涉及riemannian歧管的标态曲率,该公式根据其切线束的适应性正顺式框架而具有分布。然后,我们使用公式研究了沿标态曲率分布崩溃的度量的效果。这一结果有助于在riemannian歧管上找到积极的标量曲率度量的问题。
We prove a formula involving the scalar curvature of a Riemannian manifold endowed with a distribution in terms of an adapted orthonormal frame for its tangent bundle. Using the formula, we then investigate the effect of collapsing the metric along the distribution on the scalar curvature. This result contributes to the question of finding a positive scalar curvature metric on a Riemannian manifold.