论文标题

代码4ML:带注释的机器学习代码的大规模数据集

Code4ML: a Large-scale Dataset of annotated Machine Learning Code

论文作者

Drozdova, Anastasia, Guseva, Polina, Trofimova, Ekaterina, Scherbakova, Anna, Ustyuzhanin, Andrey

论文摘要

程序代码作为数据源正在数据科学界越来越受欢迎。在此类资产上培训的模型的可能应用程序范围从数据维度降低到自动代码生成的分类。但是,没有可以应用的方法的注释数量有限。为了解决缺乏注释的数据集,我们提出了Code4ML语料库。它包含代码片段,任务摘要,竞赛和数据集说明,可从Kaggle公开获得,Kaggle是托管数据科学竞赛的领先平台。该语料库包括约250万个从约1万木星笔记本中收集的ML代码片段。人类评估人员通过专门为此目的设计的用户友好界面注释了摘要的代表性部分。 Code4ML数据集可以通过数据驱动的方法来帮助解决许多软件工程或数据科学挑战。例如,对于用自然语言指定的ML任务,它可能有助于语义代码分类,代码自动完成和代码生成。

Program code as a data source is gaining popularity in the data science community. Possible applications for models trained on such assets range from classification for data dimensionality reduction to automatic code generation. However, without annotation number of methods that could be applied is somewhat limited. To address the lack of annotated datasets, we present the Code4ML corpus. It contains code snippets, task summaries, competitions and dataset descriptions publicly available from Kaggle - the leading platform for hosting data science competitions. The corpus consists of ~2.5 million snippets of ML code collected from ~100 thousand Jupyter notebooks. A representative fraction of the snippets is annotated by human assessors through a user-friendly interface specially designed for that purpose. Code4ML dataset can potentially help address a number of software engineering or data science challenges through a data-driven approach. For example, it can be helpful for semantic code classification, code auto-completion, and code generation for an ML task specified in natural language.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源