论文标题
在3D空间中的1D Cosserat梁和2D表面的一致的混合耦合方法
A consistent mixed-dimensional coupling approach for 1D Cosserat beams and 2D surfaces in 3D space
论文作者
论文摘要
本文提出了一种新的计算方法,用于将任意弯曲的1D纤维与定义的2D表面耦合,例如,通过3D固体或2D壳配方的2D表面。将纤维建模为具有六个局部自由度,三个位置和三个旋转的局部自由度的1D Cosserat Continua(梁)。考虑到沿梁的位置和旋转自由度,提出了该问题类型的运动类型的运动学一致的1D-2D耦合方案。通过在梁中心线上的点和表面上的相应点之间执行恒定的正常距离来耦合位置自由度。该策略需要对表面正常矢量场的一致描述,以确保基本的机械性能,例如保护角动量。先前的贡献中考虑了梁的自由度旋转程度的耦合以及代表固体体积内局部取向的合适旋转张量。在目前的工作中,这种耦合方法将通过构造代表局部表面取向的旋转张量来扩展。几个数值示例证明了所提出方法的一致性,鲁棒性和准确性。为了展示其适用于实际相关性多物理系统的适用性,提出了血管支架的流体结构相互作用示例。
The present article proposes a novel computational method for coupling arbitrarily curved 1D fibers with a 2D surface as defined, e.g., by the 2D surfaces of a 3D solid body or by 2D shell formulations. The fibers are modeled as 1D Cosserat continua (beams) with six local degrees of freedom, three positional and three rotational ones. A kinematically consistent 1D-2D coupling scheme for this problem type is proposed considering the positional and rotational degrees of freedom along the beams. The positional degrees of freedom are coupled by enforcing a constant normal distance between a point on the beam centerline and a corresponding point on the surface. This strategy requires a consistent description of the surface normal vector field to guarantee fundamental mechanical properties such as conservation of angular momentum. Coupling of the rotational degrees of freedom of the beams and a suitable rotation tensor representing the local orientation within a solid volume has been considered in a previous contribution. In the present work, this coupling approach will be extended by constructing rotation tensors that are representative of local surface orientations. Several numerical examples demonstrate the consistency, robustness and accuracy of the proposed method. To showcase its applicability to multi-physics systems of practical relevance, the fluid-structure interaction example of a vascular stent is presented.