论文标题

超弹性薄壳的计算分叉分析

Computational bifurcation analysis of hyperelastic thin shells

论文作者

Liu, Zhaowei, McBride, Andrew, Ghosh, Abhishek, Heltai, Luca, Huang, Weicheng, Yu, Tiantang, Steinmann, Paul, Saxena, Prashant

论文摘要

超弹性薄壳的通胀是一个重要且高度非线性的问题,在涉及严重运动学和本构非线性的多种工程应用中出现,此外还出现了各种不稳定性。我们提出了一种等同几类方法,以计算遵循Kirchhoff-Love假设和相关的大变形的高弹性细壳的通胀。几何和变形场都使用CATMULL-CLARK细分碱基离散,这些底座提供了Kirchhoff-Love shell公式所需的C1连续有限元框架。为了遵循超弹性薄壳的复杂非线性响应,通过增量模拟通货膨胀,并通过富含ARC长度对照的Newton-Raphson方法求解每个增量步骤。在每个增量步骤之后,线性系统的特征值分析允许在平衡稳定性的情况下将分叉诱导到较低的能量模式。首先使用基准测试验证了所提出的方法,然后应用于工程应用程序,在该应用程序中,我们证明了模拟大变形和相关复杂不稳定性的能力。

The inflation of hyperelastic thin shells is an important and highly nonlinear problem that arises in multiple engineering applications involving severe kinematic and constitutive nonlinearities in addition to various instabilities. We present an isogeometric approach to compute the inflation of hyperelastic thin shells, following the Kirchhoff-Love hypothesis and associated large deformation. Both the geometry and the deformation field are discretized using Catmull-Clark subdivision bases which provide the C1-continuous finite element framework required for the Kirchhoff-Love shell formulation. To follow the complex nonlinear response of hyperelastic thin shells, the inflation is simulated incrementally, and each incremental step is solved via the Newton-Raphson method enriched with arc-length control. Eigenvalue analysis of the linear system after each incremental step allows for inducing bifurcation to a lower energy mode in case stability of the equilibrium is lost. The proposed method is first validated using benchmarks, and then applied to engineering applications, where we demonstrate the ability to simulate large deformation and associated complex instabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源