论文标题
多尺度交错贴片方案的两个新型家族有效地模拟了大规模,弱阻尼的线性波
Two novel families of multiscale staggered patch schemes efficiently simulate large-scale, weakly damped, linear waves
论文作者
论文摘要
许多多尺度波系统表现出宏观的紧急行为,例如洪水和海啸的流体动力学。解决大量空间量表通常需要高度高的计算成本。波系统中的小耗散构成了进一步开发多个维度的多尺度建模方法的重大挑战。本文开发并评估了两种无方程式多尺度方法在新颖的2D交错贴片方案上,并证明了这些多尺度方案对弱阻尼线性波的功能和实用性。对数值圆形误差敏感性的详细研究确立了开发交错的贴片方案的鲁棒性。对广泛参数的全面特征值分析确立了多尺度方案的稳定性,准确性和一致性。对计算复杂性的分析表明,多尺度方案的测量计算时间可能比相应的全域计算的计算时间小10^5倍。这项工作为有效的非线性多尺度波的大规模模拟奠定了基础。
Many multiscale wave systems exhibit macroscale emergent behaviour, for example, the fluid dynamics of floods and tsunamis. Resolving a large range of spatial scales typically requires a prohibitively high computational cost. The small dissipation in wave systems poses a significant challenge to further developing multiscale modelling methods in multiple dimensions. This article develops and evaluates two families of equation-free multiscale methods on novel 2D staggered patch schemes, and demonstrates the power and utility of these multiscale schemes for weakly damped linear waves. A detailed study of sensitivity to numerical roundoff errors establishes the robustness of developed staggered patch schemes. Comprehensive eigenvalue analysis over a wide range of parameters establishes the stability, accuracy, and consistency of the multiscale schemes. Analysis of the computational complexity shows that the measured compute times of the multiscale schemes may be 10^5 times smaller than the compute time for the corresponding full-domain computation. This work provides the essential foundation for efficient large-scale simulation of challenging nonlinear multiscale waves.