论文标题

实际量子操作和状态转换

Real quantum operations and state transformations

论文作者

Kondra, Tulja Varun, Datta, Chandan, Streltsov, Alexander

论文摘要

想象力的资源理论提供了一个有用的框架,以了解以数学上严格的方式来理解量子数字的作用,这对于量子力学的制定至关重要。在本文的第一部分中,我们研究了单方面和双方设置中``real''(量子)操作的特性。结果,我们为在真实行动下的状态转变提供了必要和充分的条件,并显示了``真实的纠缠''单调的存在。在本文的第二部分中,我们专注于通过实际量子操作的单复制状态转换的问题。从纯初始状态开始时,我们通过找到转化的最佳保真度的分析表达来完全解决这个问题,反之亦然。此外,对于涉及任意初始状态和纯最终状态的状态转换,我们提供了一个半决赛计划,以计算给定转换概率的最佳可实现忠诚度。

Resource theory of imaginarity provides a useful framework to understand the role of complex numbers, which are essential in the formulation of quantum mechanics, in a mathematically rigorous way. In the first part of this article, we study the properties of ``real'' (quantum) operations both in single-party and bipartite settings. As a consequence, we provide necessary and sufficient conditions for state transformations under real operations and show the existence of ``real entanglement'' monotones. In the second part of this article, we focus on the problem of single copy state transformation via real quantum operations. When starting from pure initial states, we completely solve this problem by finding an analytical expression for the optimal fidelity of transformation, for a given probability of transformation and vice versa. Moreover, for state transformations involving arbitrary initial states and pure final states, we provide a semidefinite program to compute the optimal achievable fidelity, for a given probability of transformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源