论文标题
自适应物理信息的神经操作员,用于粗粒度非平衡流动
Adaptive physics-informed neural operator for coarse-grained non-equilibrium flows
论文作者
论文摘要
这项工作提出了一种新的机器学习(ML)的范式,旨在提高非平衡反应流量模拟的计算效率,同时确保符合基础物理学。该框架通过分层和自适应的深度学习策略结合了降低维度和神经操作员,以学习化学动力学的多尺度粗粒处理方程的解决方案。提出的代孕构建结构为树,叶子节点代表单独的神经操作员块,其中物理嵌入了多个软和硬约束的形式。分层属性具有两个优点:i)从最慢的时间尺度开始,它允许通过转移学习来简化训练阶段; ii)通过实现适应性,由于替代物的评估仅限于基于气体非平衡的局部程度,因此可以通过适应性来加速预测步骤。该模型应用于用于应用超声飞行的化学动力学研究,并在此处对纯氧气混合物进行了测试。在0-D场景中,所提出的ML框架可以自适应预测近三十种物种的动态,在广泛的初始条件下,最大相对误差为4.5%。此外,与在操作员分拆集成框架中使用的常规隐式方案相比,该方法在1D冲击模拟中使用时,该方法的准确性范围从1%到4.5%和一个数量级的速度不等。鉴于本文中提出的结果,这项工作为构建有效的基于ML的替代物以及反应性Navier-Stokes求解器奠定了基础,以准确表征多维计算流体动力学模拟中的非平衡现象。
This work proposes a new machine learning (ML)-based paradigm aiming to enhance the computational efficiency of non-equilibrium reacting flow simulations while ensuring compliance with the underlying physics. The framework combines dimensionality reduction and neural operators through a hierarchical and adaptive deep learning strategy to learn the solution of multi-scale coarse-grained governing equations for chemical kinetics. The proposed surrogate's architecture is structured as a tree, with leaf nodes representing separate neural operator blocks where physics is embedded in the form of multiple soft and hard constraints. The hierarchical attribute has two advantages: i) It allows the simplification of the training phase via transfer learning, starting from the slowest temporal scales; ii) It accelerates the prediction step by enabling adaptivity as the surrogate's evaluation is limited to the necessary leaf nodes based on the local degree of non-equilibrium of the gas. The model is applied to the study of chemical kinetics relevant for application to hypersonic flight, and it is tested here on pure oxygen gas mixtures. In 0-D scenarios, the proposed ML framework can adaptively predict the dynamics of almost thirty species with a maximum relative error of 4.5% for a wide range of initial conditions. Furthermore, when employed in 1-D shock simulations, the approach shows accuracy ranging from 1% to 4.5% and a speedup of one order of magnitude compared to conventional implicit schemes employed in an operator-splitting integration framework. Given the results presented in the paper, this work lays the foundation for constructing an efficient ML-based surrogate coupled with reactive Navier-Stokes solvers for accurately characterizing non-equilibrium phenomena in multi-dimensional computational fluid dynamics simulations.