论文标题
部分可观测时空混沌系统的无模型预测
Formal Semantics for the Halide Language
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present the first formalization and metatheory of language soundness for a user-schedulable language, the widely used array processing language Halide. User-schedulable languages strike a balance between abstraction and control in high-performance computing by separating the specification of what a program should compute from a schedule for how to compute it. In the process, they make a novel language soundness claim: the result of a program should always be the same, regardless of how it is scheduled. This soundness guarantee is tricky to provide in the presence of schedules that introduce redundant recomputation and computation on uninitialized data, rather than simply reordering statements. In addition, Halide ensures memory safety through a compile-time bounds inference engine that determines safe sizes for every buffer and loop in the generated code, presenting a novel challenge: formalizing and analyzing a language specification that depends on the results of unreliable program synthesis algorithms. Our formalization has revealed flaws and led to improvements in the practical Halide system, and we believe it provides a foundation for the design of new languages and tools that apply programmer-controlled scheduling to other domains.