论文标题

FedAudio:音频任务的联合学习基准

FedAudio: A Federated Learning Benchmark for Audio Tasks

论文作者

Zhang, Tuo, Feng, Tiantian, Alam, Samiul, Lee, Sunwoo, Zhang, Mi, Narayanan, Shrikanth S., Avestimehr, Salman

论文摘要

由于与不断从用户收集数据的消费者设备的普遍性有关的数据隐私问题,联邦学习(FL)近年来引起了很大的关注。尽管已经开发了许多FL基准来促进FL研究,但它们都不包括音频数据和与音频相关的任务。在本文中,我们通过为音频任务引入新的FL基准来填补这一关键差距,我们将其称为Fedaudio。 FedAudio包括来自三个重要的音频任务的四个代表性和常用的音频数据集,这些任务与FL用例很好地对齐。特别是,FedAudio的独特贡献是在现实世界中部署FL系统时介绍数据噪声和标签错误,以模拟挑战。 Fedaudio还包括数据集的基准结果和Pytorch库,目的是促进研究人员公平地比较其算法。我们希望Fedaudio可以作为激发音频任务的新研究,从而使声学和语音研究社区受益的催化剂。可以在https://github.com/zhang-tuo-pdf/fedaudio上访问数据集和基准结果。

Federated learning (FL) has gained substantial attention in recent years due to the data privacy concerns related to the pervasiveness of consumer devices that continuously collect data from users. While a number of FL benchmarks have been developed to facilitate FL research, none of them include audio data and audio-related tasks. In this paper, we fill this critical gap by introducing a new FL benchmark for audio tasks which we refer to as FedAudio. FedAudio includes four representative and commonly used audio datasets from three important audio tasks that are well aligned with FL use cases. In particular, a unique contribution of FedAudio is the introduction of data noises and label errors to the datasets to emulate challenges when deploying FL systems in real-world settings. FedAudio also includes the benchmark results of the datasets and a PyTorch library with the objective of facilitating researchers to fairly compare their algorithms. We hope FedAudio could act as a catalyst to inspire new FL research for audio tasks and thus benefit the acoustic and speech research community. The datasets and benchmark results can be accessed at https://github.com/zhang-tuo-pdf/FedAudio.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源