论文标题

子词排序的存在性可确定性

Existential Definability over the Subword Ordering

论文作者

Baumann, Pascal, Ganardi, Moses, Thinniyam, Ramanathan S., Zetzsche, Georg

论文摘要

我们研究了一阶逻辑(FO),这些结构是由某些字母$ a $的有限单词组成的结构,以及(不连续的)子字排序。就量化器交替片段的可决定性而言,此逻辑是充分理解的:如果每个单词都作为常数可用,那么即使是$σ_1$(即存在的)片段也是不可确定的,已经用于二进制字母$ a $。但是,到目前为止,对量词交替片段的表现力鲜为人知:例如,存在性片段的不可证明的证明依赖于二芬太汀方程,并且只显示了在单一字母(和某些辅助预耐药)上递归枚举的语言。我们表明,如果$ | a | \ ge 3 $,则在$ a $ a $ a $ a $ a时,只有递归枚举列举的存在,可以在$ a $ a $的存在片段中定义关系。这意味着所有片段的特征$σ_i$:如果$ | a | \ ge 3 $,则在$σ_i$中可以定义关系,并且仅当它属于算术层次结构的$ i $ th级时。此外,我们的结果对纯逻辑的$ i \ ge 2 $的$σ_i$碎片产生了类似的完整描述,其中$ a^*$的单词不可作为常数可用。

We study first-order logic (FO) over the structure consisting of finite words over some alphabet $A$, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the $Σ_1$ (i.e., existential) fragment is undecidable, already for binary alphabets $A$. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if $|A|\ge 3$, then a relation is definable in the existential fragment over $A$ with constants if and only if it is recursively enumerable. This implies characterizations for all fragments $Σ_i$: If $|A|\ge 3$, then a relation is definable in $Σ_i$ if and only if it belongs to the $i$-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the $Σ_i$-fragments for $i\ge 2$ of the pure logic, where the words of $A^*$ are not available as constants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源