论文标题

通过当地统一时间的演变来种植Schrödinger的猫州

Growing Schrödinger's cat states by local unitary time evolution of product states

论文作者

Bocini, Saverio, Fagotti, Maurizio

论文摘要

我们设想的是多体系统,可以用具有微不足道的特征态的量子自旋链哈密顿人来描述。对于通用的汉密尔顿人来说,这样的状态代表了量子疤痕。我们表明,通常,宏观进入状态自然会在单个射影测量中仅在琐碎的特征态中进行一次旋转后生长。此外,我们确定了一种条件,在这种情况下,正在增长的是“Schrödinger的猫状态”。我们的分析并未揭示对纠缠状态发展的任何特定要求,前提是琐碎的特征态不能最大程度地减少/最大化当地的保护法。我们明确研究了两个示例:通用哈密顿人描述的系统和一个展示$ u(1)$隐藏对称性的模型。后者可以重新解释为2腿梯子,其中沿着腿部的相互作用通过晶体管般的构建块在另一支腿上的局部状态控制。

We envisage many-body systems that can be described by quantum spin-chain Hamiltonians with a trivial separable eigenstate. For generic Hamiltonians, such a state represents a quantum scar. We show that, typically, a macroscopically-entangled state naturally grows after a single projective measurement of just one spin in the trivial eigenstate; moreover, we identify a condition under which what is growing is a "Schrödinger's cat state". Our analysis does not reveal any particular requirement for the entangled state to develop, provided that the trivial eigenstate does not minimise/maximise a local conservation law. We study two examples explicitly: systems described by generic Hamiltonians and a model that exhibits a $U(1)$ hidden symmetry. The latter can be reinterpreted as a 2-leg ladder in which the interactions along the legs are controlled by the local state on the other leg through transistor-like building blocks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源