论文标题

战略性的GeoSteeering工作流,具有不确定性量化和深度学习:Goliat领域的案例研究

Strategic Geosteeering Workflow with Uncertainty Quantification and Deep Learning: A Case Study on the Goliat Field

论文作者

Rammay, Muzammil Hussain, Alyaev, Sergey, Larsen, David Selvåg, Bratvold, Reidar Brumer, Saint, Craig

论文摘要

对日志记录数据的实时解释使我们能够估算各向异性地下环境中地质层的位置和特性。捕获不确定性的鲁棒实时估计对于有效的GeoSteering操作非常有用。但是,在先前的概念地质模型中的模型误差和测量的正向模拟可能是对地质层剖面不可靠估计的重要因素。当使用深神经网络(DNN)近似值时,该模型误差是特异性发音的,我们用来加速和平行测量的模拟。本文介绍了一个实用的工作流程,该工作流程包括离线和在线阶段。离线阶段包括DNN培训和建立不确定的先前近井地理模型。在线阶段使用灵活的迭代集合更顺畅(Flex)来实时同化,对近似DNN模型中模型错误的深度电磁数据会计。我们证明了在Goliat Field(Barents Sea)中为历史井(Barents Sea)的一个历史井的案例研究中提出的工作流程。尽管DNN模型近似,并且无论选定的先验中的层数如何,但我们的概率估计的中位数与专有倒置相比。通过估计模型误差,Flex会自动量化层边界和电阻率的不确定性,这不是专有反转的标准。

The real-time interpretation of the logging-while-drilling data allows us to estimate the positions and properties of the geological layers in an anisotropic subsurface environment. Robust real-time estimations capturing uncertainty can be very useful for efficient geosteering operations. However, the model errors in the prior conceptual geological models and forward simulation of the measurements can be significant factors in the unreliable estimations of the profiles of the geological layers. The model errors are specifically pronounced when using a deep-neural-network (DNN) approximation which we use to accelerate and parallelize the simulation of the measurements. This paper presents a practical workflow consisting of offline and online phases. The offline phase includes DNN training and building of an uncertain prior near-well geo-model. The online phase uses the flexible iterative ensemble smoother (FlexIES) to perform real-time assimilation of extra-deep electromagnetic data accounting for the model errors in the approximate DNN model. We demonstrate the proposed workflow on a case study for a historic well in the Goliat Field (Barents Sea). The median of our probabilistic estimation is on-par with proprietary inversion despite the approximate DNN model and regardless of the number of layers in the chosen prior. By estimating the model errors, FlexIES automatically quantifies the uncertainty in the layers' boundaries and resistivities, which is not standard for proprietary inversion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源