论文标题

UWB PHY无线电设置的自动运行时间改编的深度加固学习

Deep reinforcement learning for automatic run-time adaptation of UWB PHY radio settings

论文作者

Coppens, Dieter, Shahid, Adnan, De Poorter, Eli

论文摘要

超宽带技术在室内本地化和基于位置的服务方面变得越来越流行。这使得最近的进步集中在减少范围错误的同时,而研究重点是实现更可靠和节能的沟通的研究基本上没有探索。 IEEE 802.15.4 UWB物理层允许选择几种影响能源消耗,范围和可靠性的设置。结合UWB设备报告的可用链接状态诊断,有机会根据环境动态选择PHY设置。为了解决这个问题,我们提出了一种深入的Q学习方法,以实现可靠的UWB通信,最大化数据包接收率(PRR)并最大程度地减少能耗。深度Q学习非常适合此问题,因为它是一种对环境响应的天生自适应算法。在现实的办公环境中的验证表明,该算法的表现优于传统的Q学习,线性搜索和使用固定的PHY层。我们发现,与在动态办公室环境中相比,与固定的PHY设置相比,深Q学习可以达到更高的平均PRR并减少范围误差,同时仅使用14%的能量。

Ultra-wideband technology has become increasingly popular for indoor localization and location-based services. This has led recent advances to be focused on reducing the ranging errors, whilst research focusing on enabling more reliable and energy efficient communication has been largely unexplored. The IEEE 802.15.4 UWB physical layer allows for several settings to be selected that influence the energy consumption, range, and reliability. Combined with the available link state diagnostics reported by UWB devices, there is an opportunity to dynamically select PHY settings based on the environment. To address this, we propose a deep Q-learning approach for enabling reliable UWB communication, maximizing packet reception rate (PRR) and minimizing energy consumption. Deep Q-learning is a good fit for this problem, as it is an inherently adaptive algorithm that responds to the environment. Validation in a realistic office environment showed that the algorithm outperforms traditional Q-learning, linear search and using a fixed PHY layer. We found that deep Q-learning achieves a higher average PRR and reduces the ranging error while using only 14% of the energy compared to a fixed PHY setting in a dynamic office environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源