论文标题
carnot群体上无穷大的水平矢量场的分布分布差异
The distributional divergence of horizontal vector fields vanishing at infinity on Carnot groups
论文作者
论文摘要
我们在Carnot组的设置(即,与分层的nilpotent Lie代数相连的谎言组)中定义了BV类型的空间,该谎言是允许一个人表征所有分布的f表征所有分布的f,而在无限度上存在一个连续的水平矢量场φ,无限度消失了。 De Pauw和Torres,[13],用于欧几里得的环境。
We define a BV -type space in the setting of Carnot groups (i.e., simply connected Lie groups with stratified nilpotent Lie algebra) that allows one to characterize all distributions F for which there exists a continuous horizontal vector field Φ, vanishing at infinity, that solves the equation divHΦ = F. This generalize to the setting of Carnot groups some results by De Pauw and Pfeffer, [12], and by De Pauw and Torres, [13], for the Euclidean setting.