论文标题

部分可观测时空混沌系统的无模型预测

Action Functional Gradient Descent algorithm for estimating escape paths in Stochastic Chemical Reaction Networks

论文作者

Gagrani, Praful, Smith, Eric

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We first derive the Hamilton-Jacobi theory underlying continuous-time Markov processes, and then use the construction to develop a variational algorithm for estimating escape (least improbable or first passage) paths for a generic stochastic chemical reaction network that exhibits multiple fixed points. The design of our algorithm is such that it is independent of the underlying dimensionality of the system, the discretization control parameters are updated towards the continuum limit, and there is an easy-to-calculate measure for the correctness of its solution. We consider several applications of the algorithm and verify them against computationally expensive means such as the shooting method and stochastic simulation. While we employ theoretical techniques from mathematical physics, numerical optimization and chemical reaction network theory, we hope that our work finds practical applications with an inter-disciplinary audience including chemists, biologists, optimal control theorists and game theorists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源