论文标题
部分可观测时空混沌系统的无模型预测
Geodesic packing in graphs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Given a graph $G$, a geodesic packing in $G$ is a set of vertex-disjoint maximal geodesics, and the geodesic packing number of $G$, ${\gpack}(G)$, is the maximum cardinality of a geodesic packing in $G$. It is proved that the decision version of the geodesic packing number is NP-complete. We also consider the geodesic transversal number, ${\gt}(G)$, which is the minimum cardinality of a set of vertices that hit all maximal geodesics in $G$. While $\gt(G)\ge \gpack(G)$ in every graph $G$, the quotient ${\rm gt}(G)/{\rm gpack}(G)$ is investigated. By using the rook's graph, it is proved that there does not exist a constant $C < 3$ such that $\frac{{\rm gt}(G)}{{\rm gpack}(G)}\le C$ would hold for all graphs $G$. If $T$ is a tree, then it is proved that ${\rm gpack}(T) = {\rm gt}(T)$, and a linear algorithm for determining ${\rm gpack}(T)$ is derived. The geodesic packing number is also determined for the strong product of paths.