论文标题

蒙版语言模型中的性别心理健康污名

Gendered Mental Health Stigma in Masked Language Models

论文作者

Lin, Inna Wanyin, Njoo, Lucille, Field, Anjalie, Sharma, Ashish, Reinecke, Katharina, Althoff, Tim, Tsvetkov, Yulia

论文摘要

心理健康的污名阻止了许多人接受适当的护理,社会心理学研究表明,男性心理健康往往会被忽视。在这项工作中,我们研究了蒙面语言模型中性别健康的污名。在此过程中,我们通过开发以心理学研究为基础的框架来操作心理健康污名:我们使用临床心理学文献来策划提示,然后评估模型产生性别单词的倾向。我们发现,蒙面的语言模型捕捉了关于心理健康中性别的社会污名:与男性有关患有心理健康状况的句子(32%vs.19%),模型始终比男性更有可能预测女性受试者,并且这种差异加剧了指示治疗行为的句子。此外,我们发现,不同模型对男人和女人的污名化尺寸不同,将诸如愤怒,责备和可怜之类的刻板印象与患有心理健康状况的女性相比,与男性相比。在展示模型性别健康污名的复杂细微差别时,我们证明,在评估计算模型的社会偏见时,身份的背景和重叠维度是重要的考虑因素。

Mental health stigma prevents many individuals from receiving the appropriate care, and social psychology studies have shown that mental health tends to be overlooked in men. In this work, we investigate gendered mental health stigma in masked language models. In doing so, we operationalize mental health stigma by developing a framework grounded in psychology research: we use clinical psychology literature to curate prompts, then evaluate the models' propensity to generate gendered words. We find that masked language models capture societal stigma about gender in mental health: models are consistently more likely to predict female subjects than male in sentences about having a mental health condition (32% vs. 19%), and this disparity is exacerbated for sentences that indicate treatment-seeking behavior. Furthermore, we find that different models capture dimensions of stigma differently for men and women, associating stereotypes like anger, blame, and pity more with women with mental health conditions than with men. In showing the complex nuances of models' gendered mental health stigma, we demonstrate that context and overlapping dimensions of identity are important considerations when assessing computational models' social biases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源