论文标题
自然语法符合自由能原理
Natural Language Syntax Complies with the Free-Energy Principle
论文作者
论文摘要
自然语法会产生一系列无限的层次结构化表达式。我们声称它们是根据自由能原理(FEP)使用的。虽然概念上的进步以及建模和仿真工作已尝试将语音分割和语言交流与FEP连接起来,但我们将此程序扩展到负责生成句法对象的基础计算。我们认为,最近在语言设计中提出的经济原则,例如理论语法的“最小搜索”标准 - 遵守FEP。就更高的语言功能而言,这为FEP提供了更大程度的解释能力 - 并为语言学提供了关于可计算性的第一原则的基础。我们展示了如何使用树几何深度和Kolmogorov复杂性估计值(招募Lempel-ZIV压缩算法)来准确预测有关句法工作空间的法律操作,直接与变异自由能最小化的表述直接相符。这用于激励我们称Turing-Chomsky压缩(TCC)的语言设计的一般原则。我们使用TCC来使语言学家的关注点与FEP提供的自我组织的规范性描述,这是通过将理论语言学和心理语言学的证据编码为主动推断中有效句法计算的基本核心原理。
Natural language syntax yields an unbounded array of hierarchically structured expressions. We claim that these are used in the service of active inference in accord with the free-energy principle (FEP). While conceptual advances alongside modelling and simulation work have attempted to connect speech segmentation and linguistic communication with the FEP, we extend this program to the underlying computations responsible for generating syntactic objects. We argue that recently proposed principles of economy in language design - such as "minimal search" criteria from theoretical syntax - adhere to the FEP. This affords a greater degree of explanatory power to the FEP - with respect to higher language functions - and offers linguistics a grounding in first principles with respect to computability. We show how both tree-geometric depth and a Kolmogorov complexity estimate (recruiting a Lempel-Ziv compression algorithm) can be used to accurately predict legal operations on syntactic workspaces, directly in line with formulations of variational free energy minimization. This is used to motivate a general principle of language design that we term Turing-Chomsky Compression (TCC). We use TCC to align concerns of linguists with the normative account of self-organization furnished by the FEP, by marshalling evidence from theoretical linguistics and psycholinguistics to ground core principles of efficient syntactic computation within active inference.