论文标题
一种基于信息增益的新型方法,用于分类和降低高光谱图像
A novel information gain-based approach for classification and dimensionality reduction of hyperspectral images
论文作者
论文摘要
最近,高光谱传感器提高了我们以高光谱分辨率监测地球表面的能力。但是,光谱数据的高维度为图像处理带来了挑战。因此,缩小维度是降低计算复杂性并提高分类准确性的必要步骤。在本文中,我们提出了一种基于信息增益的新滤波器方法,以降低高度光谱图像的分类。采用基于高光谱乐队选择的特殊策略来选择最有用的乐队,并丢弃无关紧要和嘈杂的乐队。该算法根据信息增益函数与支持向量机分类器评估频段的相关性。使用两个基准高光谱数据集(印第安纳州,帕维亚)和三种竞争方法比较所提出的方法。比较结果表明,信息增益过滤器方法的表现优于测试数据集上的其他方法,并且可以显着降低计算成本,同时提高分类精度。关键字:高光谱图像;减少维度;信息收益;分类精度。 关键字:高光谱图像;减少维度;信息收益;分类精度。
Recently, the hyperspectral sensors have improved our ability to monitor the earth surface with high spectral resolution. However, the high dimensionality of spectral data brings challenges for the image processing. Consequently, the dimensionality reduction is a necessary step in order to reduce the computational complexity and increase the classification accuracy. In this paper, we propose a new filter approach based on information gain for dimensionality reduction and classification of hyperspectral images. A special strategy based on hyperspectral bands selection is adopted to pick the most informative bands and discard the irrelevant and noisy ones. The algorithm evaluates the relevancy of the bands based on the information gain function with the support vector machine classifier. The proposed method is compared using two benchmark hyperspectral datasets (Indiana, Pavia) with three competing methods. The comparison results showed that the information gain filter approach outperforms the other methods on the tested datasets and could significantly reduce the computation cost while improving the classification accuracy. Keywords: Hyperspectral images; dimensionality reduction; information gain; classification accuracy. Keywords: Hyperspectral images; dimensionality reduction; information gain; classification accuracy.