论文标题
基于神经网络的自动化IFT-20感官神经元分类器,用于秀丽隐杆线虫
A Neural Network Based Automated IFT-20 Sensory Neuron Classifier for Caenorhabditis elegans
论文作者
论文摘要
在成像数据中确定神经元身份是神经科学的重要任务,促进了跨生物体神经活动的比较。反过来,跨生物比较可以进行各种研究,包括对功能网络的全脑分析,并将特定神经元与行为或环境刺激联系起来。秀丽隐杆线虫中最新的三维泛神经成像和单细胞分辨率的发展带来了神经元的鉴定,跟踪和活动监测。线虫C.秀丽隐杆线虫通常被用作模型生物体,用于研究神经元活动,因为其透明度和精心理解的神经系统。高准确性神经元鉴定的主要障碍是,在成年秀丽隐杆线虫中,神经元细胞体的位置没有刻板印象。解决此问题的现有方法使用遗传编码的标记作为附加识别功能。例如,神经菌株使用多色荧光记者。但是,由于过度遗传修饰的负面影响,这种方法的使用有限。在这项研究中,我仅使用单色荧光图像提出了一种替代性神经元鉴定技术。我设计了一种新型的基于神经网络的分类器,该分类器会使用迭代,具有里程碑意义的神经元识别过程自动标记感官神经元,该过程受到人类采用的手动注释程序的启发。该设计标记了秀丽隐杆线虫中的感觉神经元,精度为91.61%。
Determining neuronal identity in imaging data is an essential task in neuroscience, facilitating the comparison of neural activity across organisms. Cross-organism comparison, in turn, enables a wide variety of research including whole-brain analysis of functional networks and linking the activity of specific neurons to behavior or environmental stimuli. The recent development of three-dimensional, pan-neuronal imaging with single-cell resolution within Caenorhabditis elegans has brought neuron identification, tracking, and activity monitoring all within reach. The nematode C. elegans is often used as a model organism to study neuronal activity due to factors such as its transparency and well-understood nervous system. The principal barrier to high-accuracy neuron identification is that in adult C. elegans, the position of neuronal cell bodies is not stereotyped. Existing approaches to address this issue use genetically encoded markers as an additional identifying feature. For example, the NeuroPAL strain uses multicolored fluorescent reporters. However, this approach has limited use due to the negative effects of excessive genetic modification. In this study, I propose an alternative neuronal identification technique using only single-color fluorescent images. I designed a novel neural network based classifier that automatically labels sensory neurons using an iterative, landmark-based neuron identification process inspired by the manual annotation procedures that humans employ. This design labels sensory neurons in C. elegans with 91.61% accuracy.