论文标题

在电离时期的干涉测量中表征涂料残差

Characterization Of Inpaint Residuals In Interferometric Measurements of the Epoch Of Reionization

论文作者

Pagano, Michael, Liu, Jing, Liu, Adrian, Kern, Nicholas S., Ewall-Wice, Aaron, Bull, Philip, Pascua, Robert, Ravanbakhsh, Siamak, Abdurashidova, Zara, Adams, Tyrone, Aguirre, James E., Alexander, Paul, Ali, Zaki S., Baartman, Rushelle, Balfour, Yanga, Beardsley, Adam P., Bernardi, Gianni, Billings, Tashalee S., Bowman, Judd D., Bradley, Richard F., Burba, Jacob, Carey, Steven, Carilli, Chris L., Cheng, Carina, DeBoer, David R., Acedo, Eloy de Lera, Dexter, Matt, Dillon, Joshua S., Eksteen, Nico, Ely, John, Fagnoni, Nicolas, Fritz, Randall, Furlanetto, Steven R., Gale-Sides, Kingsley, Glendenning, Brian, Gorthi, Deepthi, Greig, Bradley, Grobbelaar, Jasper, Halday, Ziyaad, Hazelton, Bryna J., Hewitt, Jacqueline N., Hickish, Jack, Jacobs, Daniel C., Julius, Austin, Kariseb, MacCalvin, Kerrigan, Joshua, Kittiwisit, Piyanat, Kohn, Saul A., Kolopanis, Matthew, Lanman, Adam, La Plante, Paul, Loots, Anita, MacMahon, David Harold Edward, Malan, Lourence, Malgas, Cresshim, Malgas, Keith, Marero, Bradley, Martinot, Zachary E., Mesinger, Andrei, Molewa, Mathakane, Morales, Miguel F., Mosiane, Tshegofalang, Neben, Abraham R., Nikolic, Bojan, Nuwegeld, Hans, Parsons, Aaron R., Patra, Nipanjana, Pieterse, Samantha, Razavi-Ghods, Nima, Robnett, James, Rosie, Kathryn, Sims, Peter, Smith, Craig, Swarts, Hilton, Thyagarajan, Nithyanandan, van Wyngaarden, Pieter, Williams, Peter K. G., Zheng, Haoxuan

论文摘要

射频干扰(RFI)是防止21cm干涉仪器检测到电离时代的系统挑战之一。为了减轻RFI对数据分析管道的影响,已经开发了许多用于恢复RFI损坏数据的涂漆技术。我们检查了由于内部介入而引入的可见性和功率谱中引入的定性和定量错误。我们对模拟数据以及来自电离阵列(HERA)1阶段上限的实际数据进行分析。我们还引入了一个卷积神经网络,该网络能够在干涉仪器中添加RFI损坏的数据。我们在模拟数据上训练网络,并表明我们的网络能够在无需重新训练的情况下介绍真实数据。我们发现,在模型中掺入高波数的技术最适合在窄带RFI上涂上。我们还表明,使用我们的基准参数离散的pr酸球体序列(DPSS)和清洁为间歇性``窄带''RFI提供了最佳性能,而高斯进度回归(GPR)和最小二乘光谱分析(LSSA)为较大的RFI差距提供了最佳性能。但是,我们警告说,这些定性结论对每种涂漆技术的选择的超参数敏感。我们发现这些结果在模拟和实际可见性中都是一致的。我们表明,所有覆盖技术可靠地可靠地重现功率谱中的前景。由于介入技术不应能够再现噪声实现,因此我们发现最大的错误发生在噪声主导的延迟模式中。我们表明,将来,随着数据的噪声水平降低,干净和DPSS最能够重现HERA数据可见性中的频率结构。

Radio Frequency Interference (RFI) is one of the systematic challenges preventing 21cm interferometric instruments from detecting the Epoch of Reionization. To mitigate the effects of RFI on data analysis pipelines, numerous inpaint techniques have been developed to restore RFI corrupted data. We examine the qualitative and quantitative errors introduced into the visibilities and power spectrum due to inpainting. We perform our analysis on simulated data as well as real data from the Hydrogen Epoch of Reionization Array (HERA) Phase 1 upper limits. We also introduce a convolutional neural network that capable of inpainting RFI corrupted data in interferometric instruments. We train our network on simulated data and show that our network is capable at inpainting real data without requiring to be retrained. We find that techniques that incorporate high wavenumbers in delay space in their modeling are best suited for inpainting over narrowband RFI. We also show that with our fiducial parameters Discrete Prolate Spheroidal Sequences (DPSS) and CLEAN provide the best performance for intermittent ``narrowband'' RFI while Gaussian Progress Regression (GPR) and Least Squares Spectral Analysis (LSSA) provide the best performance for larger RFI gaps. However we caution that these qualitative conclusions are sensitive to the chosen hyperparameters of each inpainting technique. We find these results to be consistent in both simulated and real visibilities. We show that all inpainting techniques reliably reproduce foreground dominated modes in the power spectrum. Since the inpainting techniques should not be capable of reproducing noise realizations, we find that the largest errors occur in the noise dominated delay modes. We show that in the future, as the noise level of the data comes down, CLEAN and DPSS are most capable of reproducing the fine frequency structure in the visibilities of HERA data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源