论文标题

学习预测任意量子过程

Learning to predict arbitrary quantum processes

论文作者

Huang, Hsin-Yuan, Chen, Sitan, Preskill, John

论文摘要

我们提出了一种有效的机器学习(ML)算法,用于预测$ N $ QUBITS上的任何未知量子过程$ \ MATHCAL {E} $。对于广泛的分布,在任意$ n $ qubit状态上的$ \ MATHCAL {D} $,我们表明该ML算法可以学会从未知过程中预测输出的任何本地属性〜$ \ nathcal {e} $,并且从$ \ \ nathcal {d d} $中得出的输入中的较小的平均误差。即使未知过程是一个指数级的大门的量子电路,ML算法在计算上也有效。我们的算法结合了未知状态的学习特性的有效程序,并学习对可观察到的未知数的低度近似值。该分析取决于证明新的规范不平等,包括经典的Bohnenblust-Hille不平等现象的量子类似物,我们通过提供改进的算法来优化当地的汉密尔顿人来得出。关于预测量子动力学的数值实验,其演变时间最高$ 10^6 $,系统尺寸最高$ 50 $ Qubits证实了我们的证明。总体而言,我们的结果突出了ML模型预测复杂量子动力学输出的潜力要比运行过程本身所需的时间快得多。

We present an efficient machine learning (ML) algorithm for predicting any unknown quantum process $\mathcal{E}$ over $n$ qubits. For a wide range of distributions $\mathcal{D}$ on arbitrary $n$-qubit states, we show that this ML algorithm can learn to predict any local property of the output from the unknown process~$\mathcal{E}$, with a small average error over input states drawn from $\mathcal{D}$. The ML algorithm is computationally efficient even when the unknown process is a quantum circuit with exponentially many gates. Our algorithm combines efficient procedures for learning properties of an unknown state and for learning a low-degree approximation to an unknown observable. The analysis hinges on proving new norm inequalities, including a quantum analogue of the classical Bohnenblust-Hille inequality, which we derive by giving an improved algorithm for optimizing local Hamiltonians. Numerical experiments on predicting quantum dynamics with evolution time up to $10^6$ and system size up to $50$ qubits corroborate our proof. Overall, our results highlight the potential for ML models to predict the output of complex quantum dynamics much faster than the time needed to run the process itself.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源