论文标题

基于同伴Hermitian Hamiltonian的非热系统的变异矩阵产品状态方法

Variational Matrix Product State Approach for Non-Hermitian System Based on a Companion Hermitian Hamiltonian

论文作者

Guo, Zhen, Xu, Zheng-Tao, Li, Meng, You, Li, Yang, Shuo

论文摘要

表现出拓扑特性的非热门系统正在吸引日益增长的兴趣。在这项工作中,我们提出了一种算法,用于解决基于同伴Hermitian Hamiltonian的基质产品状态(MPS)形式主义中的非甲米系统的基态。如果已知非热系统的特征值,则可以使用Hermitian变异方法直接构建和解决伴随的Hermitian Hamiltonian。当特征值尚不清楚时,梯度下降与同伴Hermitian Hamiltonian同时产生基态特征烯类和特征态。我们的算法以差异原理为坚实的基础,可确保收敛,并与非硫磺su-schrieffer-heeger(NH-SSH)模型的精确解决方案以及其相互作用的扩展非常吻合。我们提出的方法避免了解决任何非热矩阵,并克服了在大型非热系统中通常遇到的数值不稳定性。

Non-Hermitian systems exhibiting topological properties are attracting growing interest. In this work, we propose an algorithm for solving the ground state of a non-Hermitian system in the matrix product state (MPS) formalism based on a companion Hermitian Hamiltonian. If the eigenvalues of the non-Hermitian system are known, the companion Hermitian Hamiltonian can be directly constructed and solved using Hermitian variational methods. When the eigenvalues are unknown, a gradient descent along with the companion Hermitian Hamiltonian yields both the ground state eigenenergy and the eigenstate. With the variational principle as a solid foundation, our algorithm ensures convergence and provides results in excellent agreement with the exact solutions of the non-Hermitian Su-Schrieffer-Heeger (nH-SSH) model as well as its interacting extension. The approach we present avoids solving any non-Hermitian matrix and overcomes numerical instabilities commonly encountered in large non-Hermitian systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源