论文标题
循环下降,匹配和Schur po阳性
Cyclic descents, matchings and Schur-positivity
论文作者
论文摘要
本文介绍了有关通过解释为匹配的几何定义的新的下降集统计量,并在本文中引入了统计,并被证明与标准的分布。然后,将此概念应用于构造与互动,标准的年轻tableaux和motzkin路径的明确循环下降扩展。随后是相关的准对称函数的Schur积极性。
A new descent set statistic on involutions, defined geometrically via their interpretation as matchings, is introduced in this paper, and shown to be equi-distributed with the standard one. This concept is then applied to construct explicit cyclic descent extensions on involutions, standard Young tableaux and Motzkin paths. Schur-positivity of the associated quasisymmetric functions follows.