论文标题

使用解剖学先验和不确定性定量对视网膜OCT中Bruch的膜进行分割

Segmentation of Bruch's Membrane in retinal OCT with AMD using anatomical priors and uncertainty quantification

论文作者

Fazekas, Botond, Lachinov, Dmitrii, Aresta, Guilherme, Mai, Julia, Schmidt-Erfurth, Ursula, Bogunovic, Hrvoje

论文摘要

BRUCH的膜(BM)对光学相干断层扫描(OCT)的分割是诊断和随访与年龄相关的黄斑变性(AMD)的关键步骤,这是发达国家失明的主要原因之一。存在自动化的BM分割方法,但它们通常不解释结果的解剖相一致性,也没有提供预测信心的反馈。这些因素限制了这些系统在实际情况下的适用性。考虑到这一点,我们提出了一种用于AMD患者自动化BM分割的端到端深度学习方法。训练了U-NET的注意力,以输出BM位置的概率密度函数,同时考虑到表面的自然曲率。除表面位置外,该方法还估计了分割输出的A扫描明智的不确定性度量。随后,使用薄板花键(TPS)将具有高不确定性的A扫描插值。我们通过对内部数据集进行消融研究测试了我们的方法,其中138名患者涵盖了所有三个AMD阶段,并达到了4.10 UM的平均绝对定位误差。此外,将提出的分割方法与最先进的方法进行了比较,并在不同患者队列和OCT设备的外部公开数据集上表现出卓越的性能,表现出强大的泛化能力。

Bruch's membrane (BM) segmentation on optical coherence tomography (OCT) is a pivotal step for the diagnosis and follow-up of age-related macular degeneration (AMD), one of the leading causes of blindness in the developed world. Automated BM segmentation methods exist, but they usually do not account for the anatomical coherence of the results, neither provide feedback on the confidence of the prediction. These factors limit the applicability of these systems in real-world scenarios. With this in mind, we propose an end-to-end deep learning method for automated BM segmentation in AMD patients. An Attention U-Net is trained to output a probability density function of the BM position, while taking into account the natural curvature of the surface. Besides the surface position, the method also estimates an A-scan wise uncertainty measure of the segmentation output. Subsequently, the A-scans with high uncertainty are interpolated using thin plate splines (TPS). We tested our method with ablation studies on an internal dataset with 138 patients covering all three AMD stages, and achieved a mean absolute localization error of 4.10 um. In addition, the proposed segmentation method was compared against the state-of-the-art methods and showed a superior performance on an external publicly available dataset from a different patient cohort and OCT device, demonstrating strong generalization ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源