论文标题

将视觉识别的脱钩混合

Decoupled Mixup for Generalized Visual Recognition

论文作者

Liu, Haozhe, Zhang, Wentian, Xie, Jinheng, Wu, Haoqian, Li, Bing, Zhang, Ziqi, Li, Yuexiang, Huang, Yawen, Ghanem, Bernard, Zheng, Yefeng

论文摘要

当培训和测试数据来自相同的分布时,卷积神经网络(CNN)表现出了显着的性能。但是,这种训练有素的CNN模型通常会在未见和分布(OOD)的测试数据上降低。为了解决这个问题,我们提出了一种新颖的“脱钩混合”方法,以训练CNN模型以进行视觉识别。不同于以前的工作将图像对均匀地结合在一起,我们的方法将每个图像分解为歧视性和容易发出噪音的区域,然后异质地将这些图像对区域结合到训练CNN模型。由于该观察结果是,易于噪声的区域(例如纹理和混乱背景)与CNN模型在训练过程中的概括能力不利,因此我们在结合图像对时增强了判别区域的特征并抑制易于噪声的特征。为了进一步提高受过训练的模型的概括能力,我们建议在基于频率和基于上下文的时尚中解开歧视性和容易发音区域的区域。实验结果表明,我们的方法在测试由看不见的上下文组成的数据中的高概括性能,我们的方法在NICO挑战中的Track-1中实现了轨道1中的85.76 \%TOP-1准确性和轨道2中的79.92 \%。源代码可从https://github.com/haozheliu-st/nicochallenge-ood-classification获得。

Convolutional neural networks (CNN) have demonstrated remarkable performance when the training and testing data are from the same distribution. However, such trained CNN models often largely degrade on testing data which is unseen and Out-Of-the-Distribution (OOD). To address this issue, we propose a novel "Decoupled-Mixup" method to train CNN models for OOD visual recognition. Different from previous work combining pairs of images homogeneously, our method decouples each image into discriminative and noise-prone regions, and then heterogeneously combines these regions of image pairs to train CNN models. Since the observation is that noise-prone regions such as textural and clutter backgrounds are adverse to the generalization ability of CNN models during training, we enhance features from discriminative regions and suppress noise-prone ones when combining an image pair. To further improve the generalization ability of trained models, we propose to disentangle discriminative and noise-prone regions in frequency-based and context-based fashions. Experiment results show the high generalization performance of our method on testing data that are composed of unseen contexts, where our method achieves 85.76\% top-1 accuracy in Track-1 and 79.92\% in Track-2 in the NICO Challenge. The source code is available at https://github.com/HaozheLiu-ST/NICOChallenge-OOD-Classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源