论文标题
关于简化de bruijn图的单词代表性
On word-representability of simplified de Bruijn graphs
论文作者
论文摘要
如果在字母$ v $上存在一个单词$ w $,则图$ g =(v,e)$是可以说明的。单词代表图概括了几个重要类的图形,例如$ 3 $可油的图,圆形图和可比性图。文献中有一系列研究,专门针对单词代表的图。在本文中,我们研究了简化的de bruijn图的单词表示性。简化的de bruijn Graph $ s(n,k)$是一个简单的图形,它是从de bruijn Graph $ b(n,k)$中获得的,通过删除方向和循环并用单个边缘替换一对顶点之间的多个边缘。 de bruijn图是在单词上,特别是在基因组组装中发现了许多应用的单词中的关键对象。我们表明,对于任何$ n \ geq 1 $,二进制简化的de bruijn图(即\ $ s(n,2)$)都是单词代表的,而$ s(2,k)$和$ s(3,k)$对于$ k \ egeq 3 $不可证明。我们猜想所有简化的de bruijn图$ s(n,k)$对于$ n \ geq 4 $和$ k \ geq 3 $的非字重点。
A graph $G=(V,E)$ is word-representable if there exists a word $w$ over the alphabet $V$ such that letters $x$ and $y$ alternate in $w$ if and only if $xy\in E$. Word-representable graphs generalize several important classes of graphs such as $3$-colorable graphs, circle graphs, and comparability graphs. There is a long line of research in the literature dedicated to word-representable graphs. In this paper, we study word-representability of simplified de Bruijn graphs. The simplified de Bruijn graph $S(n,k)$ is a simple graph obtained from the de Bruijn graph $B(n,k)$ by removing orientations and loops and replacing multiple edges between a pair of vertices by a single edge. De Bruijn graphs are a key object in combinatorics on words that found numerous applications, in particular, in genome assembly. We show that binary simplified de Bruijn graphs (i.e.\ $S(n,2)$) are word-representable for any $n\geq 1$, while $S(2,k)$ and $S(3,k)$ are non-word-representable for $k\geq 3$. We conjecture that all simplified de Bruijn graphs $S(n,k)$ are non-word-rerpesentable for $n\geq 4$ and $k\geq 3$.