论文标题

DeepFake CLI:使用FPGA加速了深泡检测

DEEPFAKE CLI: Accelerated Deepfake Detection using FPGAs

论文作者

Bhilare, Omkar, Singh, Rahul, Paranjape, Vedant, Chittupalli, Sravan, Suratkar, Shraddha, Kazi, Faruk

论文摘要

由于较大的数据集的可用性以及生成模型的最新改进,每天都会制作更现实的深击视频。人们每天在社交媒体平台上消耗大约十亿小时的视频,这就是为什么停止假视频的传播非常重要,因为它们可能会造成破坏,危险和恶意。 DeepFake分类领域取得了重大改进,但是DeepFake检测和推论仍然是一项艰巨的任务。为了在本文中解决这个问题,我们提出了一种新型的DeepFake C-L-I(分类 - 定位推论),其中我们探索了使用FPGA的最大平行性和能源效率的能力,与普通GPU相比,使用FPGA加速了使用FPGA的量化深层捕获模型的想法。在本文中,我们使用了带有EFF-YNET结构的Light Mesonet,并在VCK5000 FPGA上加速了它,该FPGA由最先进的VC1902 Versal Architecture提供动力,该体系结构使用AI,DSP和适应性引擎进行加速。我们已经用其他最先进的推理节点对推理速度进行了基准测试,在VCK5000上获得了316.8 fps,同时保持93 \%的精度。

Because of the availability of larger datasets and recent improvements in the generative model, more realistic Deepfake videos are being produced each day. People consume around one billion hours of video on social media platforms every day, and thats why it is very important to stop the spread of fake videos as they can be damaging, dangerous, and malicious. There has been a significant improvement in the field of deepfake classification, but deepfake detection and inference have remained a difficult task. To solve this problem in this paper, we propose a novel DEEPFAKE C-L-I (Classification-Localization-Inference) in which we have explored the idea of accelerating Quantized Deepfake Detection Models using FPGAs due to their ability of maximum parallelism and energy efficiency compared to generalized GPUs. In this paper, we have used light MesoNet with EFF-YNet structure and accelerated it on VCK5000 FPGA, powered by state-of-the-art VC1902 Versal Architecture which uses AI, DSP, and Adaptable Engines for acceleration. We have benchmarked our inference speed with other state-of-the-art inference nodes, got 316.8 FPS on VCK5000 while maintaining 93\% Accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源