论文标题

爱因斯坦 - 马克斯韦尔理论的梯度流和reissner-nordström黑洞

Gradient flow of Einstein-Maxwell theory and Reissner-Nordström black holes

论文作者

De Biasio, Davide, Freigang, Julian, Lust, Dieter, Wiseman, Toby

论文摘要

Ricci流是爱因斯坦 - 希尔伯特作用的自然梯度流。在这里,我们考虑了爱因斯坦 - 马克斯韦(Einstein-Maxwell)作用的类似物,该动作的应力张量贡献与麦克斯韦场的杨米尔斯流量相结合。我们认为,这种流量符合纯电或磁性电位的静态间距,并表明它保留了非超级黑洞和极端黑洞的地平线。在后一种情况下,我们发现近地平线几何形状的流与外部的流动。 Schwarzschild黑洞是RICCI流量不稳定的静态固定点。在这里,我们考虑了Reissner-Nordström(RN)固定点的流量。磁性RN溶液成为流量的稳定固定点,以获得足够的电荷。但是,我们发现电力RN黑洞总是不稳定的。从数值上求解流量以非超级RN溶液的球形对称扰动开始,我们在电盒中发现与扰动的Schwarzschild的Ricci流相似的行为,即在有限的时间内或永远扩展到奇异性的地平线缩小到地平线。在磁性情况下,扰动的不稳定的RN溶液具有相似的扩展行为,但是将地平线大小降低到稳定的黑洞溶液而不是奇异的扰动。对于极端RN,我们可以准确地求解球形对称性的近距离流,并在电气情况下查看两个不稳定的方向,这些方向在有限流动时间中流向奇点。但是,即使将它们关闭,并将近地平线的几何形状固定为RN的几何形状,我们从数值上表明,在其地平线附近,流似乎变得奇异。

Ricci flow is a natural gradient flow of the Einstein-Hilbert action. Here we consider the analog for the Einstein-Maxwell action, which gives Ricci flow with a stress tensor contribution coupled to a Yang-Mills flow for the Maxwell field. We argue that this flow is well-posed for static spacetimes with pure electric or magnetic potentialsand show it preserves both non-extremal and extremal black hole horizons. In the latter case we find the flow of the near horizon geometry decouples from that of the exterior. The Schwarzschild black hole is an unstable fixed point of Ricci flow for static spacetimes. Here we consider flows of the Reissner-Nordström (RN) fixed point. The magnetic RN solution becomes a stable fixed point of the flow for sufficient charge. However we find that the electric RN black hole is always unstable. Numerically solving the flow starting with a spherically symmetric perturbation of a non-extremal RN solution, we find similar behaviour in the electric case to the Ricci flows of perturbed Schwarzschild, namely the horizon shrinks to a singularity in finite time or expands forever. In the magnetic case, a perturbed unstable RN solution has a similar expanding behaviour, but a perturbation that decreases the horizon size flows to a stable black hole solution rather than a singularity. For extremal RN we solve the near horizon flow for spherical symmetry exactly, and see in the electric case two unstable directions which flow to singularities in finite flow time. However, even turning these off, and fixing the near horizon geometry to be that of RN, we numerically show that the flows appear to become singular in the vicinity of its horizon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源