论文标题
纳米多孔介质中分子扩散的模型降低
Model reduction for molecular diffusion in nanoporous media
论文作者
论文摘要
多孔材料广泛用于储气和分离中。可以使用分子动力学模拟对多孔介质中各种气体的扩散特性进行建模,这些模拟可以根据孔的几何形状,复杂性和吸附的气体量来计算要求。我们探索了使用Langevin动力学估算简单孔中气体的自扩散系数的维度降低方法,从而使三维(3D)的原子相互作用可以确定现实系统的扩散性能的扩散性能可将有效的一维(1D)扩散问题降低到孔轴沿孔轴。我们通过对不同半径的单壁碳纳米管中的氮分子的转运进行建模来证明该方法,表明可以使用一些单粒子3D原子模拟来参数化1D Langevin模型。降低的1D模型可以预测在广泛的温度和气体密度范围内的准确扩散系数。我们的工作为研究更通用的多孔材料的扩散过程铺平了道路,即具有有效的复杂性模型的沸石或金属有机框架。
Porous materials are widely used for applications in gas storage and separation. The diffusive properties of a variety of gases in porous media can be modeled using molecular dynamics simulations that can be computationally demanding depending on the pore geometry, complexity and amount of gas adsorbed. We explore a dimensionality reduction approach for estimating the self-diffusion coefficient of gases in simple pores using Langevin dynamics, such that the three-dimensional (3D) atomistic interactions that determine the diffusion properties of realistic systems can be reduced to an effective one-dimensional (1D) diffusion problem along the pore axis. We demonstrate the approach by modeling the transport of nitrogen molecules in single-walled carbon nanotubes of different radii, showing that 1D Langevin models can be parametrized with a few single-particle 3D atomistic simulations. The reduced 1D model predicts accurate diffusion coefficients over a broad range of temperatures and gas densities. Our work paves the way for studying the diffusion process of more general porous materials as zeolites or metal-organics frameworks with effective models of reduced complexity.