论文标题

通过深层生成模型覆盖可重复的隐身摄影

Cover Reproducible Steganography via Deep Generative Models

论文作者

Chen, Kejiang, Zhou, Hang, Wang, Yaofei, Li, Menghan, Zhang, Weiming, Yu, Nenghai

论文摘要

尽管密码学通过将秘密信息加密到可疑形式很容易引起攻击,但隐身志通过将消息隐藏在看起来无辜的封面信号中而具有弹性的弹性,这是有利的。最小的失真隐肌是主流隐志框架之一,嵌入了信息,同时最大程度地减少了盖上覆盖元素的修改引起的失真。由于接收器的原始封面信号不可用,因此通过找到从通道编码迁移的综合征综合征功能的综合征函数来实现消息嵌入,这很复杂并且性能有限。幸运的是,深层生成模型和生成数据的鲁棒语义使接收器可以完美地从Stego信号中重现封面信号。有了这个优势,我们提出了封面可复制的隐身摄影,其中源编码(例如,算术编码)用作隐肌代码。具体而言,算术编码的解码过程用于消息嵌入,其编码过程被视为消息提取。以文本到语音和文本形象的综合任务为两个示例,我们说明了封面可复制的隐身摄影的可行性。进行静分析实验和理论分析是为了证明所提出的方法在大多数情况下都优于现有方法。

Whereas cryptography easily arouses attacks by means of encrypting a secret message into a suspicious form, steganography is advantageous for its resilience to attacks by concealing the message in an innocent-looking cover signal. Minimal distortion steganography, one of the mainstream steganography frameworks, embeds messages while minimizing the distortion caused by the modification on the cover elements. Due to the unavailability of the original cover signal for the receiver, message embedding is realized by finding the coset leader of the syndrome function of steganographic codes migrated from channel coding, which is complex and has limited performance. Fortunately, deep generative models and the robust semantic of generated data make it possible for the receiver to perfectly reproduce the cover signal from the stego signal. With this advantage, we propose cover-reproducible steganography where the source coding, e.g., arithmetic coding, serves as the steganographic code. Specifically, the decoding process of arithmetic coding is used for message embedding and its encoding process is regarded as message extraction. Taking text-to-speech and text-to-image synthesis tasks as two examples, we illustrate the feasibility of cover-reproducible steganography. Steganalysis experiments and theoretical analysis are conducted to demonstrate that the proposed methods outperform the existing methods in most cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源