论文标题

二维XXZ模型中具有或没有SU对称的二维XXZ模型中的本征状热假设

Eigenstate thermalization hypothesis in two-dimensional XXZ model with or without SU(2) symmetry

论文作者

Noh, Jae Dong

论文摘要

我们研究了在周期性边界条件下的二维矩形晶格中,调查了Spin-1/2 $ XXZ $模型的特征态热属性。利用对称性属性,我们可以对能源特征值进行精确的对角线化研究,最高为4 $ $ 4 \ times 7 $和最高$ 4 \ times 6 $的能量特征。对哈密顿特征性特征征的数值分析和哈密顿本征征基于可观察的基质的基质元素的数值分析支持二维$ xxz $模型遵循特征态热假设假设。当旋转相互作用是各向同性的时,$ xxz $模型hamiltonian可以保存总旋转,并具有SU(2)对称性。我们表明,在总自旋为良好的量子数的每个子空间中,本征状热假说仍然有效。

We investigate the eigenstate thermalization properties of the spin-1/2 $XXZ$ model in two-dimensional rectangular lattices of size $L_1\times L_2$ under periodic boundary conditions. Exploiting the symmetry property, we can perform an exact diagonalization study of the energy eigenvalues up to system size $4\times 7$ and of the energy eigenstates up to $4\times 6$. Numerical analysis of the Hamiltonian eigenvalue spectrum and matrix elements of an observable in the Hamiltonian eigenstate basis supports that the two-dimensional $XXZ$ model follows the eigenstate thermalization hypothesis. When the spin interaction is isotropic the $XXZ$ model Hamiltonian conserves the total spin and has SU(2) symmetry. We show that the eigenstate thermalization hypothesis is still valid within each subspace where the total spin is a good quantum number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源